Вход

Open/Close

www.FrrA.am


EK6RSC EK6NK 435MHz Collinear antenna
EK6RSC EK6NK 435MHz Co...
EK6RSC MS QSO 2013
EK6RSC MS QSO 2013
EK6AD EME MS SETUP 2
EK6AD EME MS SETUP 2
Караундж EK0AK 15
Караундж EK0AK 15

Новости

Пред След

С Праздником, Дорогие Коллеги!

18 Апр 2019

С Праздником, Дорогие Коллеги!

  18 Апреля - Всемирный День Радиолюбителя! Сердечно поздравляем всех коллег - радиолюбителей с Праздником! Во всем... Подробнее »

Поздравляем Новых Радиолюбителей

25 Дек 2018

Поздравляем Новых Радиолюбителей

  Уважаемые друзья! 22 Декабря 2018 года в ДОСААФ состоялась раздача новых и обновленных радиолюбительских лицензий .... Подробнее »

EK2GO Silent Key

09 Нояб 2018

EK2GO Silent Key

Уважаемые друзья. Сообщаем, что 7 Ноября 2018 года ушел из жизни наш коллега, радиолюбитель, Рафаел Габриелян,... Подробнее »

Поздравляем с Днем Радио!

07 Май 2018

Поздравляем с Днем Радио!

Много лет тому назадНу, так люди говорят,Генрих Герц создал прибор,Передающий разговор. Только был он сыроват,Опасался всех... Подробнее »

Памяти Геноцида Армян

13 Апр 2018

Памяти Геноцида Армян

  Уважаемые друзья! С 23 по 25 Апреля любительские станции ФРРА будут активны в эфире в памяти... Подробнее »

Прошли соревнования IARU Region1 Filed Day SSB

07 Сен 2017

Прошли соревнования IARU Region1 Filed Day SSB

2-3 Сентября прошли всемирные соревнования IARU Region 1 Filed Day SSB. Армянская команда EK0W/P приняла... Подробнее »

Поздравляем с Днем Радио!

08 Май 2017

Поздравляем с Днем Радио!

Много лет тому назадНу, так люди говорят,Генрих Герц создал прибор,Передающий разговор. Только был он сыроват,Опасался всех... Подробнее »

С Днем Радиолюбителя!

18 Апр 2017

С Днем Радиолюбителя!

  Сидишь на чердаке или в подвале, И в ожидании замер весь мир, Прибавив громкость, все ждать стали, Когда... Подробнее »

Российские радиолюбители в эфире из Армении

14 Март 2017

Российские радиолюбители в эфире из Армении

Уважаемые друзья! По просьбе Союза Радиолюбителей России группа росийских радиолюбителейпосетила Армению с целью ознакомления с памятниками... Подробнее »

Награждения во время сбора ФРРА

18 Фев 2017

Награждения во время сбора ФРРА

 Уважаемые друзья! 12 Февраля 2017 года состоялся очередной сбор ФРРАво время которого многие радиолюбители были награжденыграмотами и... Подробнее »

Последние записи в блоге

Oпределяем качество связи для Wi-Fi
Общие
 Установка плагина Google Earth Plugin Откройте браузер Internet Explorer и введите адрес www.ubnt.com/airlink/. Если у вас не установлен плагин Google Earth для просмотра карт в 3D, то на странице появится кнопка Download Google Earth Plugin. Нажимаем эту кнопку для скачивания плагина.
Continue Reading...
MS SPRINT contest result 2013
Радиолюбительские дипломы
Уважаемые участники конкурсаMMMonVHF.de + DUBUSMSSprint. Поздравляем всех победителей и участников конкурса и приводим оконечные результаты конкурса MSSprint 2013 года.
Continue Reading...
Телепортация. Миф или реальность
Научные материалы
Что такое телепортация ? Телепортация — общие название процессов, при которых объект перемещается из одного места в другое, за очень короткий промежуток времени (практически мгновенно), не существуя в промежуточных точках между ними, при помощи технологических методов или паранормальных явлений…&nb...
Continue Reading...

EasyBlog

This is some blog description about this site

  • Главная
    Главная Страница отображения всех блогов сайта
  • Категории
    Категории Страница отображения списка категорий системы блогов сайта.
  • Теги
    Теги Список тегов, используемых в блогах.
  • Блоггеры
    Блоггеры Список лучших блоггеров сайта.
  • Блоги групп
    Блоги групп Страница списка лучших командных блогов.
  • Авторизация
    Login Login form

Теория относительности

Добавлено : Дата: в разделе: Научные материалы
  • Размер шрифта: Больше Меньше
  • Просмотров: 2165
  • Комментариев: 0
  • Подписаться на обновления
  • Печатать

Говорят, что прозрение пришло к Альберту Эйнштейну в одно мгновение. Ученый якобы ехал на трамвае по Берну (Швейцария), взглянул на уличные часы и внезапно осознал, что если бы трамвай сейчас разогнался до скорости света, то в его восприятии эти часы остановились бы — и времени бы вокруг не стало. Это и привело его к формулировке одного из центральных постулатов относительности — что различные наблюдатели по-разному воспринимают действительность, включая столь фундаментальные величины, как расстояние и время.

 

Говорят, что прозрение пришло к Альберту Эйнштейну в одно мгновение. Ученый якобы ехал на трамвае по Берну (Швейцария), взглянул на уличные часы и внезапно осознал, что если бы трамвай сейчас разогнался до скорости света, то в его восприятии эти часы остановились бы — и времени бы вокруг не стало. Это и привело его к формулировке одного из центральных постулатов относительности — что различные наблюдатели по-разному воспринимают действительность, включая столь фундаментальные величины, как расстояние и время.

Говоря научным языком, в тот день Эйнштейн осознал, что описание любого физического события или явления зависит от системы отсчета, в которой находится наблюдатель (см. Эффект Кориолиса). Если пассажирка трамвая, например, уронит очки, то для нее они упадут вертикально вниз, а для пешехода, стоящего на улице, очки будут падать по параболе, поскольку трамвай движется, в то время как очки падают. У каждого своя система отсчета.

Но хотя описания событий при переходе из одной системы отсчета в другую меняются, есть и универсальные вещи, остающиеся неизменными. Если вместо описания падения очков задаться вопросом о законе природы, вызывающем их падение, то ответ на него будет один и тот же и для наблюдателя в неподвижной системе координат, и для наблюдателя в движущейся системе координат. Закон распределенного движения в равной мере действует и на улице, и в трамвае. Иными словами, в то время как описание событий зависит от наблюдателя, законы природы от него не зависят, то есть, как принято говорить на научном языке, являются инвариантными. В этом и заключается принцип относительности.

Как любую гипотезу, принцип относительности нужно было проверить путем соотнесения его с реальными природными явлениями. Из принципа относительности Эйнштейн вывел две отдельные (хотя и родственные) теории. Специальная, или частная, теория относительности исходит из положения, что законы природы одни и те же для всех систем отсчета, движущихся с постоянной скоростью. Общая теория относительности распространяет этот принцип на любые системы отсчета, включая те, что движутся с ускорением. Специальная теория относительности была опубликована в 1905 году, а более сложная с точки зрения математического аппарата общая теория относительности была завершена Эйнштейном к 1916 году.

Специальная теория относительности

Большинство парадоксальных и противоречащих интуитивным представлениям о мире эффектов, возникающих при движении со скоростью, близкой к скорости света, предсказывается именно специальной теорией относительности. Самый известный из них — эффект замедления хода часов, или эффект замедления времени. Часы, движущиеся относительно наблюдателя, идут для него медленнее, чем точно такие же часы у него в руках.

Время в системе координат, движущейся со скоростями, близкими к скорости света, относительно наблюдателя растягивается, а пространственная протяженность (длина) объектов вдоль оси направления движения — напротив, сжимается. Этот эффект, известный как сокращение Лоренца—Фицджеральда, был описан в 1889 году ирландским физиком Джорджем Фицджеральдом (George Fitzgerald, 1851–1901) и дополнен в 1892 году нидерландцем Хендриком Лоренцем (Hendrick Lorentz, 1853–1928). Сокращение Лоренца—Фицджеральда объясняет, почему опыт Майкельсона—Морли по определению скорости движения Земли в космическом пространстве посредством замеров «эфирного ветра» дал отрицательный результат. Позже Эйнштейн включил эти уравнения в специальную теорию относительности и дополнил их аналогичной формулой преобразования для массы, согласно которой масса тела также увеличивается по мере приближения скорости тела к скорости света. Так, при скорости 260 000 км/с (87% от скорости света) масса объекта с точки зрения наблюдателя, находящегося в покоящейся системе отсчета, удвоится.

Со времени Эйнштейна все эти предсказания, сколь бы противоречащими здравому смыслу они ни казались, находят полное и прямое экспериментальное подтверждение. В одном из самых показательных опытов ученые Мичиганского университета поместили сверхточные атомные часы на борт авиалайнера, совершавшего регулярные трансатлантические рейсы, и после каждого его возвращения в аэропорт приписки сверяли их показания с контрольными часами. Выяснилось, что часы на самолете постепенно отставали от контрольных все больше и больше (если так можно выразиться, когда речь идет о долях секунды). Последние полвека ученые исследуют элементарные частицы на огромных аппаратных комплексах, которые называются ускорителями. В них пучки заряженных субатомных частиц (таких как протоны и электроны) разгоняются до скоростей, близких к скорости света, затем ими обстреливаются различные ядерные мишени. В таких опытах на ускорителях приходится учитывать увеличение массы разгоняемых частиц — иначе результаты эксперимента попросту не будут поддаваться разумной интерпретации. И в этом смысле специальная теория относительности давно перешла из разряда гипотетических теорий в область инструментов прикладной инженерии, где используется наравне с законами механики Ньютона.

Возвращаясь к законам Ньютона, я хотел бы особо отметить, что специальная теория относительности, хотя она внешне и противоречит законам классической ньютоновской механики, на самом деле практически в точности воспроизводит все обычные уравнения законов Ньютона, если ее применить для описания тел, движущихся со скоростью значительно меньше, чем скорость света. То есть, специальная теория относительности не отменяет ньютоновской физики, а расширяет и дополняет ее (подробнее эта мысль рассматривается во Введении).

Принцип относительности помогает также понять, почему именно скорость света, а не какая-нибудь другая, играет столь важную роль в этой модели строения мира — этот вопрос задают многие из тех, кто впервые столкнулся с теорией относительности. Скорость света выделяется и играет особую роль универсальной константы, потому что она определена естественнонаучным законом (см. Уравнения Максвелла). В силу принципа относительности скорость света в вакууме c одинакова в любой системе отсчета. Это, казалось бы, противоречит здравому смыслу, поскольку получается, что свет от движущегося источника (с какой бы скоростью он ни двигался) и от неподвижного доходит до наблюдателя одновременно. Однако это так.

Благодаря своей особой роли в законах природы скорость света занимает центральное место и в общей теории относительности.

Общая теория относительности

Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации.

Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга — как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время. В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно — или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит — то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.

Закон всемирного тяготения Ньютона говорит нам, что между любыми двумя телами во Вселенной существует сила взаимного притяжения. С этой точки зрения Земля вращается вокруг Солнца, поскольку между ними действуют силы взаимного притяжения. Общая теория относительности, однако, заставляет нас взглянуть на это явление иначе. Согласно этой теории, гравитация — это следствие деформации («искривления») упругой ткани пространства-времени под воздействием массы (при этом чем тяжелее тело, например Солнце, тем сильнее пространство-время «прогибается» под ним и тем, соответственно, сильнее его гравитационное поле). Представьте себе туго натянутое полотно (своего рода батут), на которое помещен массивный шар. Полотно деформируется под тяжестью шара, и вокруг него образуется впадина в форме воронки. Согласно общей теории относительности, Земля обращается вокруг Солнца подобно маленькому шарику, пущенному кататься вокруг конуса воронки, образованной в результате «продавливания» пространства-времени тяжелым шаром — Солнцем. А то, что нам кажется силой тяжести, на самом деле является, по сути чисто внешнем проявлением искривления пространства-времени, а вовсе не силой в ньютоновском понимании. На сегодняшний день лучшего объяснения природы гравитации, чем дает нам общая теория относительности, не найдено.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, — например, незначительные отклонения Меркурия от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона, или искривление электромагнитного излучения далеких звезд при его прохождении в непосредственной близости от Солнца.

На самом деле результаты, которые предсказывает общая теория относительности, заметно отличаются от результатов, предсказанных законами Ньютона, только при наличии сверхсильных гравитационных полей. Это значит, что для полноценной проверки общей теории относительности нужны либо сверхточные измерения очень массивных объектов, либо черные дыры, к которым никакие наши привычные интуитивные представления неприменимы. Так что разработка новых экспериментальных методов проверки теории относительности остается одной из важнейших задач экспериментальной физики.

 

Комментарии

  • Никаких комментариев пока не было создано. Будьте первым комментатором.

Оставить комментарий

Гость
Гость Среда, 20 Ноябрь 2019
Free counters!

logo dx

Яндекс.Метрика

&